首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
  2023年   1篇
  2012年   1篇
  2011年   1篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
Class II genes of miniature swine have been characterized by restriction fragment length polymorphism (RFLP) analysis and by analysis of a series of clones isolated from a lymphocyte genomic library. For RFLP analysis, DNA samples from three independent major histocompatibility complex homozygous lines and three intra-MHC recombinant lines were digested with a variety of restriction enzymes and analyzed in Southern blots using human cDNA probes for DP, DQ, DR, and DZ alpha genes, and DP, DQ, DR, and DO beta genes. One, or at most two, unique fragments were detected by hybridization with each of the human probes tested. In contrast, multiple bands (five to six for most enzymes examined) were detected by each of the human probes tested, the majority of which were found to cross-react with at least three of these probes under conditions of moderate stringency. Genomic DNA from the SLA c haplotype was cloned into an EMBL-3 bacteriophage vector, and the corresponding genomic library was screened with each of these human cDNA probes. The class II genes thereby isolated from this library showed characteristics consistent with those anticipated from the RFLP analysis. Thus, unique genes were obtained which showed no evidence of cross-hybridization, while genes showed extensive cross-hybridization and were frequently detected in the library by more than one human gene probe. These data are consistent with early evolutionary divergence of a genes, prior to mammalian speciation, and with continuing evolution of genes, with possible shared usage of these genes by different a loci. The data also imply that genes can readily be assigned to loci homologous to their human counterparts, but that genes will require further mapping and/or sequence analysis to confirm assignments.  相似文献   
2.
The evolution ofMHC polymorphism has been studied by comparing the amino acid and nucleotide sequences of 14 bovine and 32 humanDRB alleles. The comparison revealed an extensive sharing of polymorphic sequence motifs in the two species. Almost identical sets of residues were found at several highly polymorphic amino acid positions in the putative antigen recognition site. Consequently, certain bovine alleles were found to be more similar to certain human alleles than to other bovine alleles. In contrast, the frequencies of silent nucleotide substitutions were found to be much higher in comparisons between species than within species implying that none of the human or bovine DRB alleles originated before the divergence of these distantly related species. The results suggest that the observed similarity inDRB polymorphism is due to convergent evolution and possibly the sharing of short ancestral sequence motifs. However, the relative role of the latter mechanism is difficult to assess due to the biased base composition in the first domain exon of polymorphic class 11 genes. The frequency of silent substitutions betweenDRB alleles was markedly lower in cattle than in man suggesting that theDRB diversity has evolved more rapidly in the former species.  相似文献   
3.
Transition proteins and protamines are highly basic sperm-specific nuclear proteins that serve to compact the DNA during late spermiogenesis. To understand their sequential role in this function, transition protein 1 (TP1), transition protein 2 (TP2), and protamine 1 (P1) were assayed by polyacrylamide gel electrophoresis in pools of microdissected, staged seminiferous tubule segments in the rat. The results were compared with immunocytochemical analyses of squash preparations from accurately identified stages of the epithelial cycle. TP2 was the first to appear as a faint band at stages IX–XI, followed by high levels at stages XII–XIV of the cycle. TP1 showed a low expression at stage XII of the cycle and peaked at stages XIII–I, whereas protamine 1 first appeared at stage I of the cycle and remained high throughout the rest of spermiogenesis. Immunocytochemical analyses and Western blots largely confirmed these results: TP2 in steps 9–14, TP1 in steps 12–15, and P1 from late step 11 to step 19 of spermiogenesis. We propose that TP2 is the first nucleoprotein that replaces histones from the spermatid nucleus, and its appearance is associated with the onset of nuclear elongation. TP1 shows up along with the compaction of the chromatin. The two transition proteins seem to have distinct roles during transformation of the nuclei and compaction of spermatid DNA.  相似文献   
4.
Measles virus is a negative-sense, single-stranded RNA virus belonging to the Mononegavirales order which comprises several human pathogens such as Ebola, Nipah, and Hendra viruses. The phosphoprotein of measles virus is a modular protein consisting of an intrinsically disordered N-terminal domain (Karlin, D., Longhi, S., Receveur, V., and Canard, B. (2002) Virology 296, 251-262) and of a C-terminal moiety (PCT) composed of alternating disordered and globular regions. We report the crystal structure of the extreme C-terminal domain (XD) of measles virus phosphoprotein (aa 459-507) at 1.8 A resolution. We have previously reported that the C-terminal domain of measles virus nucleoprotein, NTAIL, is intrinsically unstructured and undergoes induced folding in the presence of PCT (Longhi, S., Receveur-Brechot, V., Karlin, D., Johansson, K., Darbon, H., Bhella, D., Yeo, R., Finet, S., and Canard, B. (2003) J. Biol. Chem. 278, 18638-18648). Using far-UV circular dichroism, we show that within PCT, XD is the region responsible for the induced folding of NTAIL. The crystal structure of XD consists of three helices, arranged in an anti-parallel triple-helix bundle. The surface of XD formed between helices alpha2 and alpha3 displays a long hydrophobic cleft that might provide a complementary hydrophobic surface to embed and promote folding of the predicted alpha-helix of NTAIL. We present a tentative model of the interaction between XD and NTAIL. These results, beyond presenting the first measles virus protein structure, shed light both on the function of the phosphoprotein at the molecular level and on the process of induced folding.  相似文献   
5.
6.
Class II genes of miniature swine   总被引:2,自引:0,他引:2  
Genomic clones corresponding to class II genes of theSLA c haplotype of miniature swine have been isolated and characterized. These genes have been grouped into seven non-overlapping clusters on the basis of restriction mapping. Ordering of exons within each cluster was accomplished by hybridization of Southern blots of restriction fragments with exon-specific probes. The two clusters (clusters 2 and 3) encoding theDRB andDQB genes were identified on the basis of hybridization with locus-specific 3 untranslated cDNA probes. Cluster 4 contained exons of bothDOB andDQB genes, the basis for which remains to be determined. The remaining four clusters (1, 5, 6, 7) were identified as containingDP, DR, andDO coding sequences, respectively, on the basis of sequence analysis. The porcine class II region appears very similar to that of man in number and nature of the class II genes identified and in the intron/exon organization of corresponding genes.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the association number M29944. Address correspondence and offprint requests to: C. LeGuern.  相似文献   
7.
8.
The pig major histocompatibility complexDRB genes were studied by polymerase chain reaction (PCR) amplification of exon 2 from eight domestic pigs and two European wild boars. Sequence comparisons together with a phylogenetic analysis showed the existence of at least threeDRB genes of which only one appears to be expressed. The two putativeDRB pseudogenes contained delections in exon 2, making it possible to confirm the presence of three non-allelicDRB genes by analyzing the length polymorphism of the amplified PCR products. The expressed gene shows allelic polymorphism at the same positions as in the humanDRB1 gene. In addition this pig gene shows extensive allelic polymorphism at positions 84–88, whereas, e.g., humanDRB genes do not. Surprisingly, the the two putativeDRB pseudogenes also display a considerable amount of allelic polymorphism, albeit of a different character as compared with the expressedDRB gene. Short stretches of sequences are shared between individual alleles at different loci. These sequence similarities cannot be due to natural selection, since two of the threeDRB genes involved are polymorphic pseudogenes constituting allelic series that have diverged after the inactivation event. Instead, the results indicate that the sequences have been exchanged between theDRB genes by intergenic recombination. The nucleotide sequence data reported in this paper have been submitted to the EMBL/GenBank nucleotide sequence databases and have been assigned the accession numbers L36567 (DRB1 * 1) L36568 (DRB1 * 2), L36569 (DRB1 * 3), L36570 (DRB1 * 4), L36571 (DRB1 * 5), L36572 (DRB1 * 6), L36573 (DRB1 * 7), L36574 (DRB1 * 8), L36575 (DRB2 * 1), L36576 (DRB2 * 2A), L36577 (DRB2 * 2B), L36578 (DRB2 * 2C), L36579 (DRB1 * 2D), L36580 (DRB2 * 3), L36581 (DRB2 * 4), L36582 (DRB3 * 1A), L36583 (DRB3 * 1B), L36584 (DRB3 * 1C), L36585 (DRB3 * 1D)  相似文献   
9.
The nucleoprotein of measles virus consists of an N-terminal moiety, N(CORE), resistant to proteolysis and a C-terminal moiety, N(TAIL), hypersensitive to proteolysis and not visible as a distinct domain by electron microscopy. We report the bacterial expression, purification, and characterization of measles virus N(TAIL). Using nuclear magnetic resonance, circular dichroism, gel filtration, dynamic light scattering, and small angle x-ray scattering, we show that N(TAIL) is not structured in solution. Its sequence and spectroscopic and hydrodynamic properties indicate that N(TAIL) belongs to the premolten globule subfamily within the class of intrinsically disordered proteins. The same epitopes are exposed in N(TAIL) and within the nucleoprotein, which rules out dramatic conformational changes in the isolated N(TAIL) domain compared with the full-length nucleoprotein. Most unstructured proteins undergo some degree of folding upon binding to their partners, a process termed "induced folding." We show that N(TAIL) is able to bind its physiological partner, the phosphoprotein, and that it undergoes such an unstructured-to-structured transition upon binding to the C-terminal moiety of the phosphoprotein. The presence of flexible regions at the surface of the viral nucleocapsid would enable plastic interactions with several partners, whereas the gain of structure arising from induced folding would lead to modulation of these interactions. These results contribute to the study of the emerging field of natively unfolded proteins.  相似文献   
10.
The best-known example of terminal-glycan variation is the ABO histo-blood group polymorphism in humans. We model two selective forces acting on histo-blood group antigens that may account for this polymorphism. The first is generated by the invasion of opportunistic bacterial or other pathogens that interact with the epithelial-mucosal surfaces. The bacteria adapt to the microenvironments of common host phenotypes and so create frequency-dependent selection for rarer host alleles. The second is generated by intracellular viruses, and accounts for the observed differentials between the ABO-phenotype frequencies. It is thought that viruses acquire histo-blood group structures as part of their envelope from their previous host. The presence of host antigens on the viral envelope causes differential transmission of the virus between host types owing to the asymmetric action of ABO natural antibodies. Our model simulations show that these two forces acting together can account for the major features of the ABO polymorphism in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号